人工神经网络技术,计算机及相关技术发达的一些国家开始探讨用人工神经网络技术解决车牌自动识别问题,例如1994年M.M.M.FANHY等就成功地运用了BAM神经网络方法对车牌上的字符进行自动识别,BAM神经网络是由相同神经元构成的双向联想式单层网络,每一个字符模板对应着个BAM矩阵,通过与车牌上的字符比较,识别出正确的车牌号码。
几乎每家都宣称拥有高辨识率,但为了避免事后因为双方对产品认知有差异,而将运作不良的责任互相推托,用户在采购车牌辨识系统时,不妨要求实地测试,而且测试时间好超过两个礼拜,比较能判断辨识结果是否“言过其实”。因为多变的环境,两个礼拜应该可以对于场域可能影响辨识率的情形,大约掌握了八成,如果只是测一天、甚至几个小时,是无法了解的。
在讲述车牌识别过程之前,笔者要先说一下高速路口的ETC是一套依赖RFID技术的电子识别装置。这种识别技术,是通过射频技术,去识别贴在汽车前挡风或者其他便于RFID读写端识别的位置上的电子标签来识别和收费的。因此ETC和车牌识别系统是两套系统,因为车牌识别系统不承担充值和消费功能,因此ETC就应运而生。